Assessing and Remedying Coverage
for a Given Dataset

Abolfazl Asudeh, Zhongjun Jin, H. V. Jagadish
University of Michigan
{asudeh, markjin, jag}@umich.edu

Abstract—Data analysis impacts virtually every aspect of our
society today. Often, this analysis is performed on an existing
dataset, possibly collected through a process that the data
scientists had limited control over. The existing data analyzed
may not include the complete universe, but it is expected to
cover the diversity of items in the universe. Lack of adequate
coverage in the dataset can result in undesirable outcomes such
as biased decisions and algorithmic racism, as well as creating
vulnerabilities such as opening up room for adversarial attacks.

In this paper, we assess the coverage of a given dataset
over multiple categorical attributes. We first provide efficient
techniques for traversing the combinatorial explosion of value
combinations to identify any regions of attribute space not
adequately covered by the data. Then, we determine the least
amount of additional data that must be obtained to resolve
this lack of adequate coverage. We confirm the value of our
proposal through both theoretical analyses and comprehensive
experiments on real data.

I. INTRODUCTION

In the current age of data science, it is commonplace to
have a learning algorithm trained based on some dataset. This
dataset could be collected prospectively, such as through a sur-
vey or a scientific experiment. In such a case, a data scientist
may be able to specify requirements such as representation
and coverage. However, more often than not, analyses are
done with data that has been acquired independently, possibly
through a process on which the data scientist has limited,
or no, control. This is often called “found data” in the data
science context. It is generally understood that the training
dataset must be representative of the distribution from which
the actual test/production data will be drawn. More recently,
it has been recognized that it is not enough for the training
data to be representative: it must include enough examples
from less popular “categories”, if these categories are to be
handled well by the trained system. Perhaps the best known
story underlining the importance of this inclusion is the case of
the “google gorilla” [1]. An early image recognition algorithm
released by Google had not been trained on enough dark-
skinned faces. When presented with an image of a dark African
American, the algorithm labeled her as a “gorilla”. While
Google very quickly patched the software as soon as the story
broke, the question is what it could have done beforehand to
avoid such a mistake in the first place.

The Google incident is not unique: there have been many
other such incidents. For example, Nikon introduced a camera
feature to detect whether humans in the image have their
eyes open — to help avoid the all-too-common situation of the

camera-subject blinking when the flash goes off resulting in an
image with eyes closed. Paradoxically for a Japanese company,
their training data did not include enough East Asians, so that
the software classified many (naturally narrow) Asian eyes as
closed even when they were open [2]. Similarly, HP webcams
were not able to detect black faces [3] due to inadequate
coverage in the training data [4].

The problem becomes critical when it comes to data-driven
algorithmic decision making. For example, judges, probation
and parole officers are increasingly using algorithms to assess
a criminal defendant’s likelihood to re-offend [5]. Consider a
tool designed to help the judges in sentencing criminals by
predicting how likely an individual is to re-offend. Such a
tool can provide insightful signals for the judge and have the
potential to make society safer. On the other hand, a wrong
signal can have devastating effects on individuals’ lives. So
it is important to make sure that the tool is trained on data
that includes adequate representation of individuals similar to
each criminal that will be scored by it. In § V-B, we study
a real dataset of criminals used for building such a tool,
published by Propublica [5]. We shall show how inadequate
representation might result, for example, in predicting every
widowed Hispanic female as highly likely to re-offend.

While Google’s resolution to the gorilla incident was to
“ban gorillas” [6], a better solution is to ensure that the
training data has enough entries in each category. Referring to
the issue as “disparate predictive accuracy”, [7] also highlights
that the problem often is due to the insufficient or skewed
sample sizes. If the only category of interest were race, as
in (most of) the examples above, there are only a handful
of categories and this problem is easy. However, in general,
objects can have tens of attributes of interest, all of which
could potentially be used to categorize the objects. For ex-
ample, survey scientists use multiple demographical variables
to characterize respondents, including race, sex, age, economic
status, and geographic location. Whatever be the mode of data
collection for the analysis task at hand, we must ensure that
there are enough entries in the dataset for each object category.
Drawing inspiration from the literature on diversity [8], we
refer to this concept as coverage.

Note that the mentioned examples, including the Google in-
cident, are surely not sampling cases where the data scientists
poorly chose the samples from a large database. Rather, they
somehow collected, or acquired, a dataset, and then failed to
realize the lack of coverage for dark-skinned faces.

Lack of coverage in a dataset also opens up the room
for adversarial attacks [9]. The goal in an adversarial attack
is to generate examples that are misclassified by a trained
model. Poorly covered regions in the training data provide the
adversary with opportunities to create such examples.

Our goal in this paper is two-fold. First, we would like to
help the dataset users to be able to assess the coverage, as a
characterization, of a given dataset, in order to understand such
vulnerabilities. For example, we propose to use information
about lack of coverage as a widget in the nutritional label [10]
of a dataset. Once the lack of coverage has been identified,
next we would like to help data owners improve coverage
by identifying the smallest number of additional data points
needed to hit all the “large uncovered spaces”.

Given multiple attributes, each with multiple possible val-
ues, we have a combinatorial number of possible patterns,
as we call combinations of values for some or all attributes.
Depending on the size and skew in the dataset, the coverage
of the patterns will vary. Given a dataset, our first problem
is to efficiently identify patterns that do not have sufficient
coverage (the learned model may perform poorly in portions of
the attribute space corresponding to these patterns of attribute
values). It is straightforward to do this using space and time
proportional to the total number of possible patterns. Often,
the number of patterns with insufficient coverage may be far
fewer. In this paper, we develop techniques, inspired from set
enumeration [11] and association rule mining (apriori) [12],
to make this determination efficient. We shall further discuss
this and the related work in § VL

A more interesting question for the dataset owners is what
they can do about lack of coverage. Given a list of patterns
with insufficient coverage, they may try to fix these, for
example by acquiring additional data. In the ideal case, they
will be able to acquire enough additional data to get sufficient
coverage for all patterns. However, acquiring data has costs,
for data collection, integration, transformation, storage, etc.
Given the combinatorial number of patterns, it may just not
be feasible to cover all of them in practice. Therefore, we
may seek to make sure that we have adequate coverage
for at least any pattern of ¢ attributes, where we call /
the maximum covered level. Alternatively, we could identify
important pattern combinations by means of a value count,
indicating how many combinations of attribute values match
that pattern. Hence, our goal becomes to determine the patterns
for the minimum number of items we must add to the dataset
to reach a desired maximum covered level or to cover all
patterns with at least a specified minimum value count. Since
a single item could contribute to the coverage of multiple
patterns, we shall show that this problem translates to a hitting
set [13] instance. Given the combinatorial number of possible
value combinations, the direct implementation of hitting set
techniques can be very expensive. We present an approximate
solution technique that can cheaply provide good results.

We note that not all combinations of attribute values are of
interest. Some may be extremely unlikely, or even infeasible.
For example, we may find few people with attribute age

as “teen” and attribute education as “graduate degree”. A
human expert, with sufficient domain knowledge, is required
to be in the loop for (i) identifying the attributes of interest,
over which coverage is studied, (ii) setting up a validation
oracle that identifies the value combinations that are not
realistic, and (iii) identifying the uncovered patterns and the
granularity of patterns that should get resolved during the
coverage enhancement.

II. PRELIMINARIES

We consider a dataset D with d low-dimensional categorical
attributes, A = {A;, Ao, .., Ag}. Where attributes are
continuous valued or of high cardinalities, we consider using
techniques such as (a) bucketization: putting similar values
into the same bucket, or (b) considering the hierarchy of
attributes in the data cube for reducing the cardinalities. Each
tuple t € D is a vector with the value of A; being ¢[i]
for all ¢ = 1,...d. In addition, the dataset also contains the
“label attributes” Y = {y1,--- ,ya} that contain the target
values. The label attributes are not considered for the coverage
problem. In practice, a user may be interested in studying the
coverage over a subset of “attributes of interest”. In such cases,
the problem is limited to those attributes. For instance, in a
dataset of criminals, attributes such as sex, race, and age can
be attributes of interest while the label attribute shows whether
or not the criminal has re-offended. In the rest of the paper, we
assume A; to A, are the attributes of interest and simply name
them as the set of attributes. The cardinality of an attribute
A; is ¢;. Hence, the total number of value combinations is
nglck. For a subset of attributes A; C A, we use the notation
ca; = Ilva,ea,c;j to show the number of value combinations
for A;.

Definition 1 (Pattern). A pattern P is a vector of size d, in
which Pli] is either X (meaning that its value is unspecified)
or is a value of attribute A;. We name the elements with value
X as non-deterministic and the others as deterministic.

An item t matches a pattern P (written as M (t, P) = T), if
for all ¢ for which P[i] is deterministic, t[i] is equal to P[i].
Formally:

M(t,P):{

For example, consider the pattern P = X 1.X0 on four binary
attributes A; to A4. It describes the value combinations that
have the value 1 on A, and 0 on A,. Hence, for example,
t; =[1,1,0,0] and t2 = [0,1,1,0] match P, as their values
on all deterministic elements of P (i.e., A5 and A4) match the
ones of P. On the other hand, ¢35 = [1,0, 1, 0] does not match
the pattern P. That is because P[2] = 1 while ¢3[2] = 0.

Using the patterns to describe the space of value combina-
tions, we now define the coverage notion as follows:

T, Vielld:Pli]=X or P[i] = t[i

N (D

otherwise

)

Definition 2 (Coverage). Given a dataset D over d attributes
with cardinalities ¢ = {c1 ---cq}, and a Pattern P based on
c and d, the coverage of P is the number of items in D that
match P. Formally: cov(P,D)=|{t e D | M(t,P)=T}|.

When D is known, we can simplify cov(P, D) with cov(P).

We would like a high enough coverage for each pattern, to
make sure it is adequately represented. How high is enough
is expected as an input to our problem, and is expected to
be determined through statistical analyses. There is a long
tradition of computing the “power” of an experiment design,
to determine the subject pool size (corresponding to coverage)
required to obtain statistically meaningful results. Borrowing
the concept from statistics and central limit theorem, the rule
of thumb suggests the number of representatives to be around
30. For example, Sudman [14] suggests that for each “minor
subgroup” a minimum of 20 to 50 samples is necessary. This
is what we also observed in our experiments (§ V-B). Using
such, or other, techniques, we will assume that a Coverage
threshold, T, has been established for each pattern.

Definition 3 (Covered/Uncovered Pattern). A pattern P is said
to be covered in a dataset D if its coverage is greater than
or equal to the specified coverage threshold: cov(P,D) > .
Otherwise, the pattern P is said to be uncovered.

Each pattern describes a region in the space of value
combinations, constrained by its deterministic elements. We
define the level of each pattern P, shown as ¢(P), as the
number of deterministic elements in it. Patterns with fewer
deterministic elements (smaller level) are more general. For
example, consider two patterns P; =1XXX and P, =10X1
on four binary attributes A; to A4. ¢(P1) =1 and ¢(P3) = 3.
While only the value combinations 1001 and 1011 match P,
any value combination with value 1 on A; matches P;.

The set of value combinations that match a pattern P may
be a subset of the ones that match a more general pattern P’.
We say that P is dominated by P’ (or P’ dominates P). For
example, the pattern P, =10X1 is dominated by the pattern
P =1XXX.

Definition 4 (Parent/Child Pattern). A pattern Py is a parent
of a pattern Py if Py can be obtained by replacing one of
the deterministic elements in Py (say Psli]) with X. We can
equivalently say that P, is a child of pattern P;.

In general, patterns can each have multiple parents and
multiple children. A pattern with all elements being non-
deterministic has no parent and a pattern with all elements
being deterministic has no child.

If a pattern is uncovered, all of its children, and their chil-
dren, recursively, must also be uncovered. When identifying
uncovered patterns, it is redundant to list all these dominated
uncovered patterns: doing so just makes the output much
larger, and much harder for a human to digest and address.
Therefore, our goal is to identify the uncovered patterns that
are not dominated by more general uncovered ones.

Definition 5 (Maximal Uncovered Pattern (MUP)). Given a
threshold T, a pattern P is maximal uncovered, if cov(P) < T,
while for any pattern P’ parent of P, cov(P’) > 7.

With these definitions, we formally state our first problem as:

Problem 1 (MUP Identification Problem). Given a dataset D
defined over d attributes with cardinalities ¢, as well as the
coverage threshold T, find all maximal uncovered patterns M.

While there usually are far fewer MUPs than uncovered
patterns, the worst case remains bad, as we show next.

Theorem 1. No Polynomial time algorithm can guarantee the
enumeration of the set of maximal uncovered patterns.

The proof is by construction of an example with an expo-
nential number of MUPs. Details in the technical report [15].

Not all MUPs are problematic. For example, if some com-
bination of attribute values is known to be infeasible, the
corresponding pattern will necessarily be uncovered. A domain
expert can examine a list of MUPs and identify the ones that
can safely be ignored. The remaining are considered material.

In many situations, large uncovered regions in the dataset
are more harmful than narrow uncovered regions. Following
this observation, for a dataset D, we define the maximum
covered level as the maximum level up until which there is
enough coverage in the dataset. Formally:

Definition 6 (Maximum Covered Level). Let M be the mate-
rial MUPs for a dataset D. Then, the maximum covered level
of D is the maximum level X\ such that VP € M,{(P) > A\

In light of the above, we would like to have as large a
maximum covered level as possible for a dataset.

Problem 2 (Coverage Enhancement Problem). Given a
dataset D, its set of material MUPs Mp, and a positive
integer number), determine the minimum set of additional
tuples to collect such that, after the data collection, the
maximum covered level of D is at least .

We can consider variants of the coverage enhancement
problem where we seek to attain some other coverage property
rather than satisfy a maximum coverage level. For example,
instead of the level of a pattern P, one could consider the
number of value combination matching it.

Definition 7 (Value Count). Let Ap be the set of correspond-
ing attributes for non-deterministic elements of a pattern P.
The value count of P is the number of value combinations
matching P. That is, cap = lya,eapCj.

For example, consider the pattern P = X1X0 over binary
attributes A = {Ay,---,As}. Ap = {43, As}. Hence, the
number of value combinations matching Pisc4, = 2x2 =4.
The coverage enhancement problem can be modified to require
that every pattern P in D be covered if the value count of P is
at least v. As further explained in § IV, the proposed solution
can easily be extended for such alternative measures.

Next, in Theorem 2, we study the complexity of the cover-
age enhancement problem.

Theorem 2. The Coverage Enhancement Problem is NP-hard.

We prove the theorem using an interesting polynomial-time
reduction from the vertex cover (VC) problem [13]. Please
find the details in the technical report [15].

III. MUP IDENTIFICATION

In this section, we study Problem 1, MUP identification,
and propose efficient search and pruning strategies for it.

A. Naive

A single pass over the dataset can suffice, with one counter
for each pattern. With one pass, we obtain the count for each
pattern, and can determine which patterns are uncovered. We
can then compare each pair of uncovered patterns, { P;,P;}. If
P; dominates P, then the latter is not maximal, and can be
removed from the list of uncovered patterns discovered. After
all pairs of uncovered patterns have been processed, and the
ones not maximal eliminated, then the remaining uncovered
patterns are the desired maximal uncovered patterns.

Suppose there are d attributes. Each element of a pattern can
either be non-deterministic, or a value from the corresponding
attribute. As such, there are ¢; + 1 choices for each attribute
A;, resulting in a total of ¢} = II{_,(c; + 1) patterns. We
need one counter for each pattern, or a total space of O(c;).
The time taken to find all uncovered patterns is O(n x c}),
where there are n tuples in the dataset. Let the total number
of uncovered patterns found be u. Then an additional O(u?)
time is required to find the maximal uncovered patterns from
among these. Thus, the total time required is O(n cj‘ + u?).
While the additional time due to the second term will usually
be smaller than the first term, we note that w could be as large
as cj‘, and is usually much larger than the number of maximal
uncovered patterns. As a toy example, consider Example 1.

Example 1. Consider a dataset D with binary attributes A;,
Ao, and As, containing the tuples ty : 010, t5 : 001, t3 : 000,
ty : 011, and t5 : 001. Let the coverage threshold be T = 1.

The dataset in Example 1 has one MUP 1XX. In addition
to the MUP, the other 8 uncovered patterns (dominated by the
only MUP) are 1X0, 1X1, 10X, 11X, 100, 101, 110, and 111.

B. Pattern Graph

In the naive algorithm, we computed all uncovered patterns,
only to eliminate those that were not maximal. It would appear
that we could do less work if we could exploit relationships
between patterns. Specifically, patterns have parent/child rela-
tionships, as discussed in § II. We can represent relationships
between patterns by means of a pattern graph, and use this
data structure to find better algorithms.

Definition 8 (Pattern Graph). Let P be the set of all possible
patterns defined over d attributes with cardinalities c. Pattern
graph of P is the graph G(V,E) where V. = P. There is
an edge between every pair of nodes P and P’ that have a
parent-child relationship. Every edge is between two nodes at
adjacent levels, the parent node being one level smaller than
the child node.

Figure 1 shows the pattern graph for Example 1. The value
of P[i] for a node in the pattern graph is either X or one of the
values the corresponding attribute can take. Hence, the total
number of nodes in a pattern graph defined over d attributes

Fig. 1: The pattern graph for three binary attributes

is ¢! = I¢_,(ck + 1). For instance, the pattern graph in
Figure 1 contains (2 4+ 1)3 = 27 nodes. Any pattern graph
has only one node XX ---X at level 0. In Figure 1, the
patterns at level 1 are directly connected to X X X as those
are its children. The pattern 0.X X, the left-most node at level
1, is connected to the patterns 00X, 0X0, 01X, and 0X1
at level 2. That is because, those have exactly one less X
and their value for the first attribute is 0. As explained in
§ II, the number of value combinations matching P (with
non-deterministic attributes Ap) is ca, = Ilya,eapc;. The
number of non-deterministic attributes of a pattern P with
level ¢(P) is d—£(P). For example, in Figure 1, every pattern
at level 1 contains 3—1 = 2 non-deterministic elements. Since
the cardinality of all attributes is ¢; = 2, the number of value
combinations matching each pattern at level 1 is 2 x 2 = 4.
Hence, in general, the patterns with smaller levels are more
general, i.e., more value combinations match them. Each node
at level ¢ contains d — [non-deterministic elements. There are
(zl) such combinations in all. The deterministic elements can
take any value in the cardinality of the corresponding attribute.
Hence, for the special case where all attributes have the same
cardinality ¢; = ¢, total number of nodes at level ¢ are (‘j) .
For example, in Figure 1, there are (:15)21 = 6 nodes at level 1
and (3)22 = 12 nodes at level 2. The node of a pattern P in
the pattern graph has >, A,eAp Ci edges to the nodes at level
¢(P) + 1. If all attributes have equal cardinalities of ¢; = c,
each node at level £ has ¢(d — ¢) edges to nodes at level £+ 1.
Hence, the total number of edges in such a graph is:

dz_:lc(d_g)(cbce =exdx(e+1)471

£=0

This is confirmed in Figure 1, where there are totally 54 edges.

C. PATTERN-BREAKER (the top-down algorithm) and

PATTERN-COMBINER (the bottom-up algorithm)

In this section we propose the top-down and bottom-up al-
gorithms PATTERN-BREAKER and PATTERN-COMBINER, that
lead to the design of our final MUP identification algorithm,
DEEPDIVER. Due to the space limitations, we provide a sketch
of these algorithms and refer the reader to the technical
report [15] for further details.

PATTERN-BREAKER starts from the general patterns at
the top of the pattern graph and moves down by breaking
them down to more specific ones. It uses the “monotonicity”
property of coverage to prune some parts of the pattern graph.
That is, if a pattern P is uncovered, all of its children and
descendants (the nodes at level greater than ¢(P) that have a

Fig. 2: Tree transformation for Figure 1 based on Rule 1.

path to it) are also uncovered. Also, none of those children
and descendants can be a MUP, even if it has a parent that
is covered. Hence, this subgraph of the pattern graph can
immediately get pruned. In the BFS traversal of the pattern
graph, the algorithm enforces Rule 1, states in the following,
to ensure that each MUP candidate is generated exactly once.

Rule 1. A node P with the coverage more than the threshold 7,
generates the candidate nodes at level £(P) + 1 by replacing
the non-deterministic elements in the right-hand side of its
right-most deterministic element with an attribute value.

Theorem 3. Enforcing Rule 1 guarantees that each MUP
candidate is generated exactly once.

By enforcing Rule 1, the pattern graph is transformed to
a tree. For example, Figure 2 shows the corresponding tree
(generated by following Rule 1) for the pattern graph of
Figure 1.

The other algorithm PATTERN-COMBINER, performs a
bottom-up traversal of the pattern graph. It uses an observation
that the coverage of a node at level ¢ of the pattern graph
can be computed using the coverage values of its children at
level ¢ + 1. The algorithm also uses the monotonicity of the
coverage to prevent the complete traversal of the graph. That
is, the coverage of a node is not less than the coverage of any
of its children. It starts from the most specific patterns, i.e.,
the patterns at level d of the graph, computes the coverage
of each by passing over the data once. The algorithm then,
keeps combining the uncovered patterns at each level to get the
coverage of the candidate nodes at level ¢ — 1. The uncovered
nodes at level £ that all of their parents at level /—1 are covered
are MUPs. PATTERN-COMBINER transforms the pattern graph
to a forest, in order to make sure every node is generated
once. Rule 2 guarantees the transformation. Figure 3 shows
the transformation of Figure 1 to a forest, based on Rule 2.

Rule 2. A node P with the coverage less than the threshold 7,
generates the candidate nodes at level £(P) — 1 by replacing
the deterministic elements with value O in the right-hand side
of its right-most non-deterministic element with X.!

Theorem 4. Enforcing Rule 2 guarantees each MUP candi-
date is generated exactly once.
D. DEEPDIVER: Fast search space pruner

PATTERN-BREAKER traverses over the covered regions of
the pattern graph before it visits the uncovered patterns.

Note that this rule is not specific to the binary attributes. All we require is that one
of the values of each attribute is mapped to 0.

A

Fig. 3: Forest transformation for Figure 1 based on Rule 2.

Therefore, it does not perform well when a large portion of
the pattern graph is covered. Conversely, PATTERN-COMBINER
traverses over the uncovered nodes first; so it will not perform
well if most of the nodes in the graph are uncovered. When
most MUPs are in the middle of the graph, both algorithms do
poorly because they have to traverse about half of the graph.
In this subsection, we propose DEEPDIVER, an algorithm that
tries to quickly identify some MUPs and use them to prune
the search space.

The monotonicity property creates an opportunity to prune
the search space: none of the ancestors or descendants of
a given MUP can be MUP. PATTERN-BREAKER tends to
traverse level by level over the covered regions of the pattern
graph before it visits the uncovered patterns. As a result, the
moment it reaches out to a MUP, it already has visited its
ancestors and does not take the advantage of pruning the
nodes dominating the MUPs. PATTERN-COMBINER, on the
other hand, starts off in the uncovered regions; initially, the
nodes being visited early are at the bottom of the pattern
graph. It gradually moves up level by level until it hits the
MUPs. Therefore, when the MUPs are discovered the descen-
dants have already been visited and, as a result, PATTERN-
COMBINER does not take the advantage of pruning the nodes
dominated by MUPs.

With the above observations, we propose DEEPDIVER, a
search algorithm that tends to quickly find MUPs, and use
them to limit the search space by pruning the nodes both
dominating and dominated by the discovered MUPs. Since
each MUP is the child of a covered node, instead of scanning
through the covered/uncovered patterns level by level, DEEP-
DIVER takes a path down to find an uncovered node.

Initially, DEEPDIVER(Algorithm 1), following a DFS strat-
egy, takes a path down until it reaches into an uncovered region
in the graph. However, the discovered uncovered pattern is not
necessarily a MUP, as some of its other parents (other than its
generator) might also be uncovered. For instance in Example 1,
assume that in the first iteration, the algorithm take the path
XXX — X0X — 10X. The nodes XXX and X0X are covered,
but 10X is not. Still the uncovered node 10X is not a MUP
as it has the uncovered parent 1XX. Therefore, after finding
an uncovered node, DEEPDIVER changes direction and starts
moving up to find a MUP. To do so, it checks the parents of
the current node to see if any of them are uncovered. If there
exists such a parent, it moves to the parent and continues until
it finds a MUP. Upon discovering a MUP, DEEPDIVER prunes
all of its ancestors and descendants, and continues the search
for other MUPs in the regions that are still not pruned. The
algorithm stops when all of the nodes in the pattern graph are

Algorithm 1 peeppIvER
Input: Dataset D with d attributes having cardinalities ¢ and threshold 7
Output: Maximal uncovered patterns M

1: Let .S = an empty stack

2: push X--- X to S

3: while S is not empty do

4: P = pop a node from S

5: uncoveredFlag = a flag indicating if P is uncovered
6: if P is dominated by M then

7: continue

8 else if P dominates M then

9: uncoveredFlag = true
10: else

11: ent = cov(P, D)

12: uncoveredFlag = ent < T

13: end if

14: if uncoveredFlag is true then

15: Let S’ = an empty stack

16: while S’ is not empty do

17: P’ = pop a node from S’

18: P’ = generates parent nodes of P’ by replacing one determin-
istic cell with X.

19: for P € P’ do

20: ent’ = cov(P", D)

21: if cnt’ < 7 then push P” to S’; break

22: end for

23: add P to M

24: end while

25: else

26: Q) = generate nodes on P and c based on Rule 1

27: push @ to S

28: end if

29: end while

30: return M

pruned.

Here we extend the notion pattern dominance to MUP
dominance, as follows:

Definition 9 (MUP Dominance). Given a pattern P and a
set of MUPs M, P is dominated by M, if there exists a
pattern P’ € M such that P is dominated by P’. Similarly,
P dominates M, if there exists a pattern P' € M such that
P dominates P'.

Based on the Definition 9, a node being dominated by MUPs
is not a MUP. DEEPDIVER uses this property to limit the search
space by pruning all descendants of the MUPs. Similarly, the
nodes that dominate MUPs are out of the search space. We
use inverted indices for efficiently checking MUP dominance.
See the technical report [15] for details.

IV. COVERAGE ENHANCEMENT

Every MUP represents a part of the value combinations
space for which there are not enough observations in the
dataset. For example, consider a dataset defined over three
ternary attributes A;, Ao, and As, in which MUPs are XX1,
0XX, and 20X. Figure 4 shows the matches for the patterns
XX1, 0XX, and 20X, as the red, green, and blue cubes,
respectively. The more general MUPs show larger uncovered
regions in the data. For example in Figure 4, the cube of the
more general patterns XX1 and 0XX contain 9 combinations,
whereas the one for the pattern 20X contains 3 combina-
tions. While we may be willing to leave some small regions

uncovered, we would like to cover at least the large ones.
For example, not having enough representatives in a dataset
for single black males over the age of sixty may be less
of a problem than not having enough black males. Figure 5
shows the distribution of the levels of the MUPs for a real
experiment on our AirBnB dataset (c.f. § V) with n = 1000
items and d = 13 attributes, while 7 = 50. There are several
thousand MUPs in this setting. This indicates the high expense
of covering them all. However, as the distribution has a bell-
curve shape, while most MUPs appear at levels 5 and 6, there
is only one MUP at level one and less than forty in level two.

Data acquisition is usually costly. If the data are obtained
from some third party, there may be direct monetary payment.
If the data are directly collected, there may be a data collection
cost. In all cases, there is a cost to cleaning, storing, and
indexing the data. To minimize these costs, we would like
to acquire as few additional tuples as possible to meet our
coverage objective.

Before discussing further technical details, we would like to
emphasize the necessity of human-in-the-loop after the MUP
discovery. Not all the MUPs that are discovered are meaningful
and some of them may even be invalid. Therefore after the
MUP discovery, a domain expert should evaluate and mark
out the MUPs that are not problematic. In addition, we require
the expert to set up a validation oracle as a set of rules
that identifies if a value combination is semantically correct
or not. For example, any value combination that contains
{gender=Male, isPregnant=True} is semantically incorrect.

Definition 10 (Validation Rule). A validation rule is a set of
pairs {{A;,V;),- -}, where A; is an attribute and V; is a set
of values for A;. Given a pattern P and a validation rule R,
we say P satisfies R, if V(A;,V;) € R: P[i] € V..

Definition 11 (Validation Oracle). A validation oracle con-
tains a collection of validation of rules. Given a pattern P,
the oracle returns true if P satisfies none of its validation
rules. It returns false otherwise.

The human expert sets up the validation oracle by identify-
ing the collection of validation rules. Later on, in this section,
we call the validation oracle to enforce the rules that result
in the semantic appropriateness (validity) of the output of the
coverage enhancement algorithm.

As formally defined in § IT as Problem 2, for a given value A,
our objective is to collect the minimum number of additional
tuples such that after the data collection the maximum covered
level of D is at least A. It is not enough to cover the MUPs
with levels ¢ <)\, we must cover all uncovered patterns (not
necessarily maximal) with level £(P) = X. We use M), to refer
to the set of uncovered patterns at level . Finding this set is
not difficult: details in [15].

We take Example 2 as a running example in this section.

Example 2. Consider a dataset D with 5 attributes Ay to
As where Ay and As are ternary attributes while the other
attributes are binary. Suppose the maximal uncovered patterns
are as shown in Figure 7.

A7
Fig. 4: The matches of three patterns
XX1: green, 0XX: red, and 20X: blue

in a data set with ternary attributes A1,
Ao, and As.

attributes, while 7 = 50.

Let A be 2. Uncovered patterns of Example 2 with level 2, i.e.
M), are P; to Pg. Our objective is to cover all these patterns.

If we use an alternative problem formulation, the set of
patterns to cover may be different. For example, if we wish
to cover all patterns with value count of at least v, we must
enumerate uncovered patterns that meet this value count cri-
terion. Once this (straightforward) enumeration is completed,
thereafter the alternative problem formulation can be solved
in exactly the same way. A potential naive idea may be to
acquire enough additional tuples separately for each pattern
we are required to cover. However, this “solution” acquires
much more than the minimum data required, because each
tuple may contribute to the coverage of multiple patterns. What
we need is to choose tuples carefully to find the minimum
number needed to cover all the uncovered patterns of interest.
This problem translates to a hitting set [13] instance.

A. Transformation to hitting set

Hitting Set Problem: Given a set U of elements and a
collection S of non-empty subsets of I/, the objective is
to find the smallest subset of elements C' C U such that
VS eS8, dee C where e € S.

The transformation is as follows:

o U: The set of possible value combinations translates to the
universe of items .

o S: Each uncovered pattern in M), is the representative of
the set of value combinations matching it. Hence, S is the
collection of sets represented by the uncovered patterns.

This can be viewed as a bipartite graph with the value

combinations in the first part and the uncovered patterns in

the second part. There is an edge between a combination and

a pattern if the combination matches the pattern. The objective

is to select the minimum number of nodes in the first part that

hit all the patterns in the second part. Figure 6 shows the

bipartite graph for A = 1 in Figure 4.

While the hitting set problem is NP-complete, the greedy
approach guarantees a logarithmic approximation ratio for
it [13]. At every iteration, the greedy approximation algorithm
selects the item (value combination) that hits the maximum
number of un-hit sets (patterns). It continues until all the sets
get hit. In Figure 6, for instance, a run of the greedy algorithm
picks 001 as it hits both patterns and then stops.

At every iteration, the algorithm needs to find the value
combination that hits the maximum number of un-hit patterns.
This is inefficient due to the exponentially large number of the

012345678 9101112

. . Level o
Fig. 5: Distribution of MUPs in AirBnB Fig. 6: The bipartite graph for A = 1
dataset for n = 1000 items and d = 13

P XX01X
Pl 1X20X
PsXXXX1
P4j02XXX
P5XX11X
Ps| 111XX
P X020X

for Figure 4. Fig. 7: MUPs of Ex-

ample 2.
4y
P1|Po|P3|P4|P5|Pg
A =0/ L|[O[I[T[T]0
A, =1 [1[T]0]1][T A,
Ao =0/ 1[1]|1][0|1]0
Ay =11 [1[1|0]1]1 .
A, =2 1[T[1[1[1]0 .
Ag

Fig. 8: The inverted indices for
values of attributes A7 and As in
Example 2.

Fig. 9: The tree data structure used
for computing the number of patterns
a value combination hits.

value combinations and potentially exponential number of the
patterns to hit. Hence, in the following, we develop an efficient
implementation of the greedy algorithm.

B. Efficient implementation of the greedy algorithm

Consider the set of patterns we want to hit by the value
combinations. We use inverted indices to keep track of the
uncovered patterns. The ¢-th element of each pattern is either
a value of A; or is non-deterministic. For each attribute value
v; of A;, we create an inverted index to point to the patterns
with either a non-deterministic element or an element with
value v; in the i-th position. We use this to filter out the
patterns that do not match a value combination with value v;
on A;. For example, Figure 8 shows the indices for the values
of Ay and A, for P; to Py in Example 2. The first row shows
the inverted index for A; = 0. All columns of the row, except
P, and Py are 1; that is because a value combination having
A7 = 0 will not match P, or Pg, but still can match other
patterns. Having the inverted indices for the attribute values,
we use a tree data structure and design a greedy threshold-
based algorithm to find the value combination that hits the
maximum number of remaining patterns.

Consider a full tree data structure (Figure 9) with depth d
(the number of attributes). Let m be the number of patterns
that we want to hit. The root has ¢; children, each showing
a value for attribute A;. Similarly, every node at level i has
¢; children, each representing an attribute value of A;. For
instance, in Example 2, the depth of the tree is d = 5; the
root node has two children standing for A; =0 and A; = 1.
Since ¢o = 3, each of these two nodes will have three children
As =0, As = 1, and Ay = 2. Each path in the tree from
the root to a leaf shows a value combination. In [15], we

show how to use the inverted indices for finding the number
of remaining patterns a value combination hits.

Using this structure, we design the threshold-based algo-
rithm GREEDY (pseudo-code in[15]) that uses the hit-count
of its best-known value combination to prune the tree. The
algorithm traverses through the tree data structure in a DFS
manner and, starting from the root, it calls the validation
oracle before generating each child of a node, to make sure
it is semantically meaningful. As a result, it will output only
the value combination that are valid. The algorithm computes
the bit vector of valid children of a node by applying the
binary AND operation between the current bit vector and the
inverted index of each of its children. The algorithm uses the
best-known value combination as a lower-bound threshold to
prune the tree. If the children of the current node are leaf
nodes and the best of them hits more patterns than the best-
known value combination, the best option gets updated. For
the other nodes, the algorithm prioritizes the children of the
current node based on the number of 1’s in their bit-vectors.
Then, starting from the one with the max count, until the
number of 1’s in the bit-vectors is more than the best-known
hit count, it recursively checks if it can find a better value
combination in the subtrees of the children. The algorithm
keeps collecting the value combinations that hit the maximum
number of remained patterns until all of the patterns in M get
hit. As an implementation note, when the algorithm selects
a value combination, it takes the intersection of the patterns
it hits to find a more general pattern that any of its matching
value combinations hit the same set of patterns. It provides
more freedom to the user in the data collection.

V. EXPERIMENTAL EVALUATION

We conducted comprehensive experiments on real data to
both validate our proposal and to study the efficiency of the
proposed algorithms in practice.

A. Experimental Setup
Datasets. Three real datasets were used for the experiments:

o COMPAS?: ProPublica is a nonprofit organization that pro-
duces investigative journalism. They collected and published
the COMPAS dataset as part of their investigation into
racial bias in criminal risk assessment. The dataset contains
demographics, recidivism scores, and criminal offense in-
formation for 6,889 individuals. We used the attributes sex
(0: male and 1: female), age (0: under 20, 1: between 20
and 39, 2: between 40 and 59, and 3: above 60), race (0:
African-American, 1: Caucasian, 2: Hispanic, and 3: other
races), and marital status (0: single, 1: married, 2:
separated, 3: widowed, 4: significant other, 5: divorced, and
6: unknown) for studying the coverage.

o AirBnB?: AirBnB is a popular online peer to peer travel
marketplace that provides a framework for people to lease
or rent short-term lodging. We use a collection of the infor-
mation of approximately 2 million real properties enlisted

2www.propublica.0rg/datastore/dataset/compas— recidivism-risk-score-data-and-analysis

3 www.airbnb.com

in AirBnB. The website provides 41 attributes for each
property, out of which 36 are boolean attributes, such as
TV, internet, washer, and dryer.

o BlueNile*: Blue Nile is the largest online diamond retailer
globally. We collected its catalog containing 116,300 dia-
monds at the time of access. The dataset has 7 categorical
attributes for the diamonds, namely shape, cut, color,
clarity, polish, symmetry, and florescence with
cardinalities 10, 4, 7, 8, 3, 3, and 5, respectively.

Hardware and Platform. The experiments were conducted
on a Linux machine with a 3.8 GHz Intel Xeon processor and
64 GB memory. The algorithms were implemented in Java.

Experiments plan. We want to study coverage in real data.
Are there indeed uncovered patterns? Are these likely to cause
errors in prediction or analysis? We also want to study the
performance of the proposed algorithms, both for MUP iden-
tification and for coverage enhancement. We studied both these
sets of questions on all three datasets. In the interests of space,
we report only the most salient results. In particular, we focus
on the COMPAS dataset for the first set of questions, since
the negative consequences of lack of coverage are potentially
more severe than for other datasets where the impact may be
limited to errors in analytical results. We focus on the AirBnB
dataset for the performance questions, since this is the largest
of the three datasets. Since attributes of AirBnB are binary, we
supplement with the BlueNile dataset to highlight situations
where its much higher cardinality of attribute values matters.

B. Validation

1) Issues with Coverage in Real Data: Consider four demo-
graphical attributes sex, age, race, and marital status,
as the attributes of interest in the COMPAS dataset. We
investigate the lack of coverage in this dataset with regard
to these four attributes to show the risks of using it for
important tasks such as assessing a criminals’ likelihood to re-
offend and sentencing them accordingly. Setting the threshold
to 10, all the single attribute values contain more instances
than the threshold. Still, there totally are 65 MUPs in this
dataset, out of which 19 are in level / = 2, 23 in level
¢ = 3, and 23 in level { = 4. Besides other MUPs, the
existence of 19 level two MUPs in the dataset emphasizes
the potential of bad predictions for large spaces in the data
cube. To highlight one example, the MUP XX23 shows the
lack of coverage for widowed Hispanics. The dataset contains
only two instances matching this pattern and interestingly
both of them have offended multiple times. In the absence of
enough representatives for the minority subgroup, the trained
model, will likely generalize, not sticking to the couple of
examples it has seen for the minority subgroup. However, the
generalization becomes problematic when the “behavior” in
the subgroup is different and the generalization is misleading.
This means that the model may not do a good job in modeling
the behaviour of minority sub-groups. Of course, we use the

4www.bluenile.com/diamond- search?

MUP identification to raise a signal for these lack of coverage
cases. Whether or not it is problematic, needs the human expert
in the loop. Lack of coverage in this dataset shows the risk of
using it for predicting the behavior of individuals for under-
represented groups; it, therefore, questions the decisions made
based on such predictions. To show case an effect of the lack
of coverage, next we use this dataset for training a classifier.

2) Lack of coverage’s effect: After showing the lack of cov-
erage in the COMPAS dataset, next we conduct an experiment
to show its effect on accuracy of a prediction task. Using the
scikit-learn package (version 0.20) on Python, we trained a
decision tree as the classifier, while using sex, age, race,
and marital status as the observation attributes. Using the
attribute prior-count, we created the binary label attribute
that shows if a criminal has re-offended. First, using the cross-
validation, we observed that the trained model has acceptable
accuracy and fl measures of 0.76 and 0.7 over a random test
set. Relying on these numbers, a data scientist may consider
using this model for predicting the behaviour of criminals.
However, in this experiment we show that these measures does
not necessarily show the good performance for the minorities.
We focus on the minority class of Hispanic Females (HF),
as there are only 100 of those in the dataset. We chose this
group, specifically because we were limited to the records in
the dataset, and were not able to collect additional data points.
Hispanic Females was (i) a minority subgroup small enough
that removing its instances would not noticeably change the
size of the training data, while (ii) there were “enough” tuples
of this group in the dataset (100 tuples) that we could show
case the impact of additional data collection. We considered
a randomized set of 20 (out of the 100) HF as the test set
for studying the prediction over this group. Since we not only
wanted to study the effect of the lack of coverage, but also the
coverage enhancement, we created 5 training sets (using the
remaining 80 HF criminals), containing {0, 20, 40, 60, 80} HF
plus all other records not in this demographic. We used these
datasets for training the classifier and calculated its accuracy
and f1 measure for predicting our test set of 20 HF. Figure 10
shows the results. The x-axis shows the datasets, while the left
and right y-axes show the accuracy and f1 measure for each
setting. Collecting the additional data points should result in
more accurate for the under-represented groups, as those are
to provide a better understanding of those, while not having a
major impact in the overall accuracy. This is confirmed in the
figure, as the overall accuracy remained on 76% in all settings.
We also observed that overall fl-measure did not change from
0.7. First, one can see that the dataset that does not have
any HF, has an unacceptable performance for this class, as
its accuracy is less than 50%. The next observation is that the
accuracy and f1 measures improve as the lack of coverage is
resolved by adding more HF to the training data. The reduction
in the slope of the accuracy curve around 40 suggests that it
can be a good choice for the coverage threshold. Interestingly,
this is aligned with the central limit theorem’s rule of thumb of
30. In a similar experiment, we considered two other minority
subgroups, (1. Female - Other Races (FO) and 2. Male - Other

Races (MO)) for which there existed at least 20 records in
the dataset that we could consider as the test data. Removing
the records of these demographics from the training data, the
accuracy of the model was 39% for FO and 59% for MO. The
accuracy different between the two groups shows the higher
similarity in the “behaviour” of MO to other records in the
training data.

3) Coverage Enhancement Quality: In previous experi-
ment, we showed the quality of coverage enhancement in
the sense that it increases the model performance for the
under-represented groups, while not impacting the overall
performance of the model. In this experiment, we show the
role of human-in-the-loop by setting up the validation oracle
and identifying the MUPs to be covered. Enforcing the rules
of validation oracle while expanding the tree data structure
used by the coverage enhancement algorithm GREEDY, the
semantic appropriateness (validity) of the output of the cover-
age enhancement algorithm is guaranteed. We consider the
MUPs discovered in § V-B1 while targeting to satisfy the
coverage level of 2. In the validation oracle, we rule out (a) the
combinations with marital status being unknown and (b) the
age group below 20 being not single. Coverage enhancement
suggests to collect {over 60, other races, widowed}, {between
20 and 40, Hispanic, widowed}, {over 60, significant other},
{other races, divorced}, and {other races, widowed}.

C. Performance Evaluation

We evaluate the performance of (i) the three MUP identifi-
cation algorithms PATTERN-BREAKER, PATTERN-COMBINER,
and DEEPDIVER, as well as (ii) the coverage enhancement al-
gorithm. The Naive algorithm for MUP identification (§ III-A)
did not finish for any of the settings within the time limit.
Therefore, we did not include it in the results. For the coverage
enhancement problem, we compare the GREEDY algorithm
(§ IV-B) with the direct implementation of the hitting set’s
approximation algorithm (naive). We use our largest dataset,
i.e. AirBnB, as the default and test the algorithms’ perfor-
mances under various coverage threshold (7) on both AirBnB
and BlueNile. We varied the number of attributes (d) and
the size of the dataset (n) on our largest dataset, that is
AirBnB. In addition to the proposed algorithms, for MUP
identification, we also consider comparing with APRIORI, the
following adaptation of apriori algorithm [12]: we consider
each (attribute,value) as an item and find the frequent item-
sets. For each such item-set we find its parents (the item-
sets that include the item-set and one more item). For each
such parent, if all of its children are frequent, we find the
corresponding pattern and add it to the set of MUPs. We un-
derstand that because the items are considered independently
in the frequent item-set mining, not all item-set represent a
valid pattern. For instance, consider the items Iy = (A;,0)
I, = (Ay,1). Then the item-set {I;, >} does not represent
a valid pattern. Furthermore, this algorithm considers a much
larger search space (lattice) to explore, compared to the pattern
graph our algorithms explore. For instance, consider a case
where there are 10 attributes, each with cardinality 5. The

APRIORI
—O— PATTERN-BREAKER
PATTERN-COMBINER

——

—&— Overall Accuracy
—o— Subgroup Accuracy

—0— DEEPDIVER 5
-10
0.8 = I I I I (BSLALLAALLU B LALLL N L L
& 8 2 2 2 100 |-
-1 0.6 ~
07| e 2 \ 2,
] 2 [\ =¥
L 058 £ 2
<80.6 - g g 50 |- ! =
i) 1%
o~
0.4 *
0.5 |-
. . 0 Tl vl el VT 0

| |
0 20 40 60 80 10~610-510~410~310~2
dataset index Threshold rates

Fig. 11: AirBnB: MUP identicica-
tion, varying threshold
(n=1M, d=15)

Fig. 10: The effect of lack of
coverage on classification: accuracy,
fl measure

—o— PATTERN-BREAKER

PATTERN-COMBINER

—0— max £ =8 max £ =6

— DEEPDIVER max £ =4 —— max £ =2
T T T T T T 1108 T T T
~ 10% |-
g g 2 107 |
2 4 S 2
s ol) 103 = £
5 0 S 5 100 | .
¥ X
1072 |- -2]
S S P 10 | !
5 7 9 11 13 15 17 10 20 30
Dimensions

Dimensions

Fig. 14: AirBnB: MUP identicica- F1g. 15: MUPs identification with

tion, varying dimension (n = 1M, 7 various dimensions using DEEP-
=0.1%) DIVER (AirBnB, n = IM, 7 = 0.1%)
i input (£=6) i output (£=6) ln input (¢=5) I} output (¢=5)
0 B input (£=4) B @ output (¢=4) [] D input (¢=3) [0 output (¢=3)
° T T T T T T T
3 104 |- B
&
g 10%| o
: 1191
& 100 [ll\ I\ 1] | I | I | I u] | u] | o
5 10 15 20 25 30 35

. Dimensjons . .
Fig. 18: Coverage Enhancement with various dimensions using Greedy

(AirBnB, n = IM, 7 = 0.1%) — input/output sizes

size of the pattern graph is (5+1)'°, around 60 million nodes,
whereas after considering each attribute-value as an item, the
size of the defined lattice is 2°%19, around 10%°.

1) MUP identification - varying threshold: For AirBnB, we
varied the coverage threshold from 0.0001% (most patterns are
covered) to 1% (most patterns are uncovered). The dataset size
was set to one million, and the number of attributes was set
to 15. For BlueNile, we had 7 attributes and 116,300 records.
We varied coverage from 0.001% (threshold = 1) to 1%.

Results. The runtimes are shown in Figure 11 (AirBnb)
and Figure 12 (BlueNile). The x-axis denotes the different
threshold rate values. The left-y-axis is the runtime in seconds,
while the right axis and the bars show the output size (number
of MUPs). In addition, Figure 11 also contains the results
for APRIORI, the adaptation of the apriori algorithm for
discovering the MUPs. As explained in § V-C, this algorithm
suffers from multiple facts that makes it unsuitable for MUP

—O— PATTERN-BREAKER
PATTERN-COMBINER

—0O— PATTERN-BREAKER
PATTERN-COMBINER

—— DEEPDIVER '104 —0— DEEPDIVER _105
T T T T T T T T R LLLL R L LLL I R A LLL N BRI
08| 1 GO 1
2z - 2 B &
[~ A~ o
20.6 g E FO—0o—o0—202 {4 §
g =10t |
£0.4 [Ho5% o:‘,lo Eﬁ’/ﬂ z
= # = -1 0.5%
0.2 B
0 L vl o T 0 100 A S Y 1 M I 1 0

1075 10~4 103 10~2 102 10* 10° 108

Threshold rates Number of data records

Fig. 12: BlueNile: MUP iden-
ticication, varying threshold (n =
116,300, d = 7)

Fig. 13: AirBnB: MUP identicica-
tion, varying data size
(r=0.1%, d = 15)

—a— Naive (/=3) —— Greedy (£=06)
Greedy (¢=5) —o— Greedy (¢=4)
—a— Greedy (£=3)

—o— £=6 —— [(£=5
=4 —— (=3

A T I T I
~ 102 | | - 102 |
£ £ ol h
& 10° 7D\D—D—D-D/D/D/D/D* 2" /

1072 f?\&«s—w/ﬁ&\@—@@f 1072 | : |
10-6 10—4 102 10 20 30
Threshold rates Dimensions
Fig. 16: Coverage Enhancement F¥g- 17:. Covergge E.nhancemfsnt
with various thresholds (AirBnB, n ~ With ~various dimensions —using
= 1M, d = 13) Greedy (AiBnB, n = IM, 7 =
0.1%)

discovery. First, the lattice data structure it has to explore
can be extensively larger than the pattern graph. Second, it
needs to generate the parents of the frequent item-sets to find
the infrequent item-sets that all of their children are frequent.
Finally, not all the discovered item-sets represent valid MUPs.
This is confirmed in this experiment where it only finished
for one settings in less than 100 seconds. For instance for
threshold of 0.001% it took 516 sec. to finish. As expected,
we observed the same behaviour in other experiments as
well. Hence, in the rest of experiments, we only focus on
evaluating the algorithms we proposed in this paper. When
the threshold increases, larger regions in the space become
uncovered and more general MUPs with smaller levels appear
in the results. This is the reason for the drop in the runtime
of PATTERN-BREAKER in Figure 11 and Figure 12. Recall
that PATTERN-BREAKER is a top-down search algorithm, and
generally returns faster when the MUPs are higher in the
pattern graph (having small levels). In contrast, PATTERN-
COMBINER’s runtime increases as the PATTERN-COMBINER
is a bottom-up search algorithm and, hence, terminates faster
when the MUPs are low in the pattern graph (when the space is
mostly covered) as shown in Figure 11 and Figure 12. In tests
with AirBnB, these two algorithms have similar speeds when
the threshold is around 0.01%, in which case, most MUPs
appear in the middle of the graph. Meanwhile, Figure 11 also
shows that DEEPDIVER is as fast, if not faster, as the other two
algorithms in all situations. This suggests that the efficiency

of DEEPDIVER is more robust to the actual data coverage
status. As for BlueNile, Figure 12 also suggests DEEPDIVER is
the best in all cases, whereas PATTERN-COMBINER is always
slower. Still the gap between PATTERN-COMBINER with the
two other algorithms is larger. The high cardinality of the
attributes in BN is the key to this behavior. In this situation,
the width of the pattern graph quickly increases. The lowest
level (level 7) of the pattern graph in this case has more
than 100K nodes, whereas for 7 binary attributes, it is 128.
Therefore, due to the significant width of the graph in the
bottom-level, PATTERN-COMBINER (the bottom-up algorithm)
loses its efficiency.

2) MUP identification - varying data size: Setting the
number of attributes to 15 and threshold to 1%, we evaluated
the three MUP identification algorithms on data samples of
various sizes from 10K to 1M and measured the runtime.

Results. Figure 13 shows the runtime plots. The x-axis denotes
the size of test dataset; the left-y-axis denotes the runtime in
seconds and the right-y-axis (and the bars) show the number
of MUPs. All three algorithms had running time only slightly
impacted by data set size, taking less than 100 seconds in
all settings. The effort is driven more by the number of
patterns, which is independent of data set size. The PATTERN-
COMBINER algorithm checks the actual dataset only for the
bottom layer of the pattern graph and so the data set size
has no effect on most of its computation. PATTERN-BREAKER
and DEEPDIVER need to check the data for computing the
coverage of the intermediate nodes, so data set size does
matter. However, the use of inverted indices limits the impact.

3) MUP identification - varying data dimensions: Simi-
larly, we evaluate the scalability of the proposed algorithm as
the number of attributes (d) increases. With a dataset size of
one million records and the threshold set at 1%, we measured
the overall runtime of all three algorithms with the dataset
projected down to between 5 and 17 dimensions.

Results. In Figure 14, the x-axis denotes the number of
attributes, while the left-y-axis and right-y-axis (the bars)
denote the runtime in seconds and the output size, respectively.
The size of the pattern graph increases exponentially with the
number of attributes. The number of MUPs and the algorithm
running times also increase exponentially. Still, all algorithms
managed to finish in a reasonable time (under two minutes)
for up to 17 attributes.

As the number of attributes increases, the number of MUPs
increases exponentially, but those become the combination of
more attributes. While the MUPs with fewer are harmful and
important to discover, the MUPs with more attributes are too
specific, and hence, less interesting. For example, while lack
of coverage for Hispanic males in a dataset is an important fact
to discover, not having enough married Hispanic males under
the age of 20 is less harmful. Limiting the exploration level
to a certain number, allows the MUP identification algorithms
to scale for datasets with tens of attributes and still finding
the risky MUPs. We evaluated this by limiting the MUP
discovery level in Figure 15 while using DEEPDIVER for the

identification. As observed in the figure, the algorithm was
able to quickly find MUPs of up to level 2 (the MUPs that
are the combinations of one or two attributes) for even 35
attributes in around 10 sec.

4) Coverage enhancement - varying threshold: Recall that
the objective is to identify the minimum additional data to
collect, such that after the data collection the maximum
coverage level is not less than A, i.e. there are no uncovered
patterns on or above a given level A. Setting the number of
items to 1M in the AirBnB dataset and number of attributes
to 13, we vary the threshold rate from 1076 to 0.01 while
choosing different maximum coverage levels from 3 to 6.

Results. Figure 16 represents the experiment results. The x-
axis shows threshold and the y-axis provides the runtime in
seconds. First, the single blue triangular tick mark in the top-
left of the plot shows the only setting for which the naive
algorithm finished within the time limit. GREEDY, on the other
hand, finished in a few seconds for all settings. The next
observation is that, as expected, the runtime of the GREEDY
algorithm increases by the level; that is because it needs to
collect more data points to ensure that there is no uncovered
pattern on or above level A, i.e., VP € M : £(P) > . Also,
as the threshold rate increases the MUPs move to the top of the
pattern graph. Therefore, more regions in the space become
uncovered and more data points are required to guarantee the
given maximum coverage level. As a result, the algorithm’s
runtime increases by the threshold.

5) Coverage enhancement - varying data dimensions:
Lastly, we study the effect of the number of attributes on the
performance of GREEDY, as well as input and output sizes.
Using the AirBnB dataset, while setting the number of items to
IM and the threshold to %1, we vary the number of attributes
from 5 to 35, and the max. coverage level from 3 to 6.

Results. Figure 17 shows the runtime of the algorithm, while
Figure 18 provides information about the input and output
sizes. Here, by the input size, we refer to the number of
uncovered patterns (to cover) at the given level A while the
output size is the number of additional data points to collect.
First, as explained above, increasing the maximum coverage
level increases the runtime of the algorithm, as the output size
increases. This is also reflected in Figure 18, as for a fixed
number of attributes, both the input and output size increase
in orders of magnitude. Similarly, increasing the number of
attributes increases the size of the pattern graph exponentially,
and also does the algorithm runtime (Figure 17) and the
output size (Figure 18). Still, recall that lack of coverage
for the patterns that are the combination of a few attribute
values (having smaller levels) is more harmful than the ones
in the form of the combination of several attribute values.
Looking at Figure 17, while solving the coverage enhancement
problem for larger levels takes more time, the algorithm has
a reasonable performance for resolving the lack of coverage
for smaller values of maximum coverage level. Finally, in
Figure 18, applying the greedy approximation algorithm, the
output sizes are significantly smaller than the input sizes for

each setting. That is because every value combination in the
output hits multiple uncovered patterns in the input.

VI. RELATED WORK

Diversity, as a general term for capturing the quality of
a collection of items on the variety of its constituent ele-
ments [8], is an important issue in a wide range of contexts, in-
cluding social science [16], political science [17], information
retrieval [18], and big data environments and data ethics [19],
[8]. Facility dispersion problems [20] tend to disperse a set of
points such that the minimum or average distance between
the pair of points is maximized. Also, techniques such as
determinantal point process (DPP) have been used for diverse
sampling [21], [22]. A recent work [23] considers diversity
as the entropy over one discrete low-cardinality attribute. Our
definition of coverage can be seen as a generalization of this,
defined over combinations of multiple attributes.

The rich body of work on sampling, especially in the
database community, aims to draw samples from a large
database [24], [25]. Our goal in this paper is to ensure that
a given dataset (often called as “found data”) is appropriate
for use in a data science task. The dataset could be collected
independently, through a process on which the data scientist
have limited, or no, control. This is different from sampling.

Technically speaking, there are similarities between the
algorithms provided in this paper and the classical powerset
lattice and combinatorial set enumeration problems [11], such
as data cube modeling [26], frequent item-sets and association
rule mining [12], data profiling [27], and data cleaning [28].
While such work, and the algorithms such as apriori, traverse
over the powerset lattice, our problem is modeled as the
traversal over the pattern graph which has a different struc-
ture (and properties) compared to a powerset lattice. Hence,
those techniques cannot be directly applied here. We provided
some rules for traversing the pattern graph that are inspired
from the set enumeration tree [11], one-to-all broadcast in
a hypercube [29], and lattice traversal heuristic proposed
in [27]. In § IV, we modeled the data collection problem as
a hitting set instance (an equivalent of the set cover problem).
Further details about this fundamental problem can be found
in references such as [13], [30].

VII. FINAL REMARKS

In this paper, we studied lack of coverage as a risk to using a
dataset for analysis. Lack of coverage in the dataset may cause
errors in outcomes, including algorithmic racism. Defining the
coverage over multiple categorical attributes, we developed
techniques for identifying the spots not properly covered by
data to help the dataset users; we also proposed techniques
to help the dataset owners resolve the coverage issues by
additional data collection. Comprehensive experiments over
real datasets demonstrated the validity of our proposal.

Following ideas such as [14], in MUP identification prob-
lem, we considered a fixed threshold across different value
combinations, representing “minor subgroups”. We consider

further investigations on identifying threshold value and minor
subgroups, as well as other alternatives for future work.

VIII. ACKNOWLEDGEMENTS

This work was supported by NSF Grant No. 1741022. We are
grateful to the University of Toronto, Department of Computer
Science, and Dr. Nick Koudas for the AirBnB dataset.

REFERENCES

[1] M. Mulshine. A major flaw in google’s algorithm allegedly tagged two
black people’s faces with the word ’gorillas’. Business Insider, 2015.

[2] Adam Rose. Are face-detection cameras racist? Time Business, 2010.

[3] Mallory Simon. HP looking into claim webcams can’t see black people.
CNN, 2009.

[4] Tess Townsend. Most engineers are white and so are the faces they use
to train software. Recode, 2017.

[5] Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine
bias: Risk assessments in criminal sentencing. ProPublica, 5/23/2016.

[6] Alex Hern. Google’s solution to accidental algorithmic racism: ban
gorillas. The Guardian, 2018.

[7] Irene Chen, Fredrik D Johansson, and David Sontag. Why is my
classifier discriminatory? In NeurIPS, 2018.

[8] Marina Drosou, HV Jagadish, Evaggelia Pitoura, and Julia Stoyanovich.
Diversity in big data: A review. Big data, 5(2), 2017.

[9] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nelson, Nedim

gmdié, Pavel Laskov, Giorgio Giacinto, and Fabio Roli. Evasion attacks

against machine learning at test time. In ECML PKDD, 2013.

Ke Yang, Julia Stoyanovich, Abolfazl Asudeh, Bill Howe, HV Jagadish,

and Gerome Miklau. A nutritional label for rankings. In SIGMOD, 2018.

Ron Rymon. Search through systematic set enumeration. Technical

report, University of Pennsylvania, 1992.

Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining

association rules. In VLDB, 1994.

Vijay V Vazirani. Approximation algorithms.

Business Media, 2013.

Seymour Sudman. Applied sampling. Academic Press New York, 1976.

A. Asudeh, Z. Jin, and H. V. Jagadish. Assessing and remedying

coverage for a given dataset. CoRR, abs/1810.06742, 2018.

Edward H Simpson. Measurement of diversity. Nature, 163(4148), 1949.

James Surowiecki. The wisdom of crowds. Anchor, 2005.

Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel

Ieong. Diversifying search results. In WSDM, pages 5-14. ACM, 2009.

Solon Barocas and Andrew D Selbst. Big data’s disparate impact. Cal.

L. Rev., 104:671, 2016.

SS Ravi, Daniel J Rosenkrantz, and Giri Kumar Tayi. Facility dispersion

problems: Heuristics and special cases. In WADS. Springer, 1991.

Alex Kulesza, Ben Taskar, et al. Determinantal point processes for

machine learning. Foundations and Trends in ML, 5(2-3), 2012.

N. Anari, Sh. O. Gharan, and A. Rezaei. Monte carlo markov chain

algorithms for sampling strongly rayleigh distributions and determinantal

point processes. In COLT, pages 103-115, 2016.

L Elisa Celis, Amit Deshpande, Tarun Kathuria, and Nisheeth K Vishnoi.

How to be fair and diverse? CoRR, abs/1610.07183, 2016.

Frank Olken and Doron Rotem. Random sampling from databases: a

survey. Statistics and Computing, 5(1):25-42, 1995.

Graham Cormode, Minos Garofalakis, Peter J Haas, Chris Jermaine,

et al. Synopses for massive data: Samples, histograms, wavelets,

sketches. Foundations and Trends in Databases, 4(1-3):1-294, 2011.

Venky Harinarayan, Anand Rajaraman, and Jeffrey D Ullman. Imple-

menting data cubes efficiently. In SIGMOD, 1996.

A. Heise, J.A. Quiané-Ruiz, Z. Abedjan, A. Jentzsch, and F. Naumann.

Scalable discovery of unique column combinations. PVLDB, 2013.

J. He, E. Veltri, D. Santoro, G. Li, G. Mecca, P. Papotti, and N. Tang.

Interactive and deterministic data cleaning. In SIGMOD, 2016.

D.P. Bertsekas, C. Ozveren, G.D. Stamoulis, P. Tseng, and J.N. Tsitsiklis.

Optimal communication algorithms for hypercubes. JPDC, 11(4), 1991.

Dorit S Hochbaum. Approximation algorithms for NP-hard problems.

PWS Publishing Co., 1996.

[10]
(11]
[12]
[13]

Springer Science &

[14]
[15]

[16]
[17]
[18]
[19]
[20]
[21]

[22]

[23]
[24]

[25]

[26]
(27]
[28]
[29]

(30]

